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We study the rotation of a weakly conducting particle around its axis of symmetry under the action of the
external electric field, which spins in the plane normal to the axis of symmetry of the particle. The particle is
embedded in a homogeneous stationary medium with finite electric conductivity permittivity that are different
from the corresponding parameters of the particle. We determined the dependence of the particle angular
velocity upon the amplitude angular velocity of the electric field. It is shown that depending upon the ratios of
the particle electric conductivity permittivity to the corresponding parameters of the host medium the direction
of rotation of the particle can be identical or opposite to the direction of rotation of the external electric field.
We determined the amplitude-dependent critical angular velocity of the external electric field that separates the
domains with two possible regimes of rotation of the particle. In the first domain the particle rotates only in one
direction, while in the second domain the particle may rotate in two directions. We investigated also the
stability of different regimes of rotation of the particle.
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I. INTRODUCTION

The behavior of small particles embedded in a host me-
dium under the action of an external electric field has been
the subject of numerous studies �see, e.g., Refs. �1,2�, and
references therein�. In a case of the ideal dielectric the math-
ematical formulation of this problem is well known �3,4�.
Taking into account the effects of finite electric conductivity
requires using the approach that differs from that employed
in the case of the ideal dielectric. For a hydrodynamic system
such an approach is based on the system of equations of
electrohydrodynamics �5,6�.

The principal physical difference between a system with a
finite electric conductivity and the ideal dielectric system is
in the appearance of the additional free charge. In contrast to
the polarization charge, which is formed during small �mi-
croscopic� times, this additional free charge is formed during
macroscopic relaxation time. When the electric conductivity
is low the characteristic relaxation time of the free charge is
of the same order of magnitude as the macroscopic time
scale of mechanical motions in the system. This additional
free charge is localized at the boundary between the particle
and a host medium. For finite relaxation time of the free

charge the direction of the dipole moment of the particle P�

may not coincide with the direction of the external electric

field E� . This results in nonzero torque acting at the particle

M� = P� �E� and the appearance of a number of effects. Thus,
e.g., studies �7–10� showed that under the action of the alter-
nating external electric field the final orientation of a sphe-
roidal particle may be normal to the orientation of the ideal
dielectric particle subjected to the same electric field. The
comprehensive analysis of this effect was presented in Refs.
�9,10�.

Another effect, which is caused by the finite electric con-
ductivity and is considered in numerous studies �see, e.g.,
Refs. �2,11–15��, is particle rotation under the action of a
constant electric field. There exists a stationary regime
whereby a particle rotates with a constant angular velocity
around its axis of symmetry while a dipole moment of a

particle P� and electric field E� remain constant. This station-
ary rotation is determined by a balance between the torque
caused by viscous forces exerted on the particle by the sur-

rounding fluid and torque M� due to the external electric field
and also by the balance between the ohmic and convective
electric currents that provides a constant direction of the di-

pole moment P� . These balances can be sustained only under
the following conditions �see, e.g., Ref. �1��:

�1

�2
�

�1

�2
, E2 � Ec

2, �1�

where �1 and �2 are conductivities of the host medium and a
particle, respectively, �1 and �2 are permittivities, Ec is a
critical magnitude of the electric field that depends upon the
viscosity of a host medium, geometry of the particle, and
parameters �1 /�2 and �1 /�2. If one of these two conditions
is not satisfied then a particle embedded in a stationary fluid
will remain at rest. Some additional discussions of this effect
can be found in Refs. �2,12�.

The situation is different if the direction of the external
electric field changes with time. In the ideal dielectric a di-
pole moment is tuned instantaneously to the direction of the
electric field. When the direction of the external electric field
is normal to the axis of symmetry then the particle remains at

rest since the dipole moment P� in this case is always aligned
with the external electric field. In the nonideal dielectric, due
to the torque caused by a free charge, the rotating external
field �captures� the particle although the particle does not
rotate synchronously with the electric field. Depending on its
parameters the particle can rotate in the direction of rotation
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of the external field or in the opposite direction. In this sense
a particle may have a positive electroviscosity �PEV� particle
or a negative electroviscosity �NEV� particle. Electrody-
namic parameters of NEV particles, �1 ,�1, satisfy the condi-
tion �1�, and in the case of the electric field with a constant
direction NEV particles may rotate if the amplitude of the
external electric field E2�Ec

2. At the same time PEV par-
ticles do not satisfy the conditions �1� and they may rotate
only under the action of the rotating electric field. It is shown
below that in the case of a rotating electric field there exists
the critical threshold Ec��� �� is a rotation frequency of the
external electric field� such that when the amplitude of the
electric field E�Ec��� the NEV particles may rotate either in
the direction of the rotation of the external field or in the
opposite direction, while PEV particles always rotate in the
direction of the rotation of the external electric field indepen-
dent of its amplitude. When the amplitude of the external
electric field E�Ec��� there exists only one regime of rota-
tion for PEV and NEV particles.

The goal of this study is to determine the dependence of
the angular velocity of particle rotation on the amplitude and
rotation frequency of the external electric field in the whole
range of the parameters of the problem and to investigate the
stability of different regimes of particle rotation.

In Sec. II we consider the mathematical model, which is
used to derive the algebraic equations that determine the sta-
tionary solutions. These solutions describe particle rotation
with a constant angular velocity �0 and rotation of the dipole

moment P� with the frequency of the external electric field �

such that the angle between the vectors P� and E� 0 remains
constant. In Sec. III we present the exact solutions of these
equations and analyze the dependence of the frequency of
particle rotation upon various parameters of the problem. We
determined formulas for the critical frequency of rotation of
the external field �c as a function of the field amplitude. It is
shown that for ���c there are two stable regimes of particle
rotation and one unstable regime. When ���c there exists
only one stable regime of rotation. In Sec. IV we investigate
the stability of particle rotation regimes as a function of the
parameters of the problem taking into account the inertia of
the particle. In the Conclusions we summarize the qualitative
behavior of the system in various ranges of parameters. We
discuss the similarity between a rotation of a particle im-
mersed in a stationary fluid under the action of the rotating
electric field and the dynamics of a particle in a fluid flow
with shear under the action of the unidirectional external
electric field.

It must be noticed that in the majority of studies it is
implied that either the axis of the particle’s rotation is fixed
and is directed perpendicular to the external field or the par-
ticle has a spherical shape. The more complicated case when
the axis of rotation of the asymmetric particle is not fixed
was investigated in Refs. �11,13,14� and was not considered
in this study.

II. MATHEMATICAL MODEL

Consider an axially symmetric particle with permittivity
�2 and conductivity �2 embedded in a host medium with

permittivity �1 and conductivity �1. Assume that the whole
system is subjected to the electric field

E� = E0�t��cos„	�t�…e�1 + sin„	�t�…e�2� . �2�

This electric field can be produced by the superposition of

two perpendicular electric fields, E� 1�t�=E1�t�e�1 and E� 2�t�
=E2�t�e�2. Clearly, E0�t�=�E1

2�t�+E2
2�t� and ctg(	�t�)

=E1�t� /E2�t�. The electric field E� is normal to the axis of
symmetry of the particle, and the angular velocity of the

particle is directed along the axis of symmetry, 
� �t�
=e�3
�t�, e�3=e�1�e�2.

The dynamics of a rotating particle is determined by the
following equation:

I
d
�

dt
= − �
� + P� � E� , �3�

where I is the moment of inertia with respect to the axis of
the particle, � is the rotational friction coefficient that is re-
lated with the viscosity coefficient �, �= f��V, f� is the nu-
merical coefficient that depends upon the shape of a particle,

V is the particle volume,E� is the electric field applied to the
system and determined by Eq. �2�.

Hereafter we consider a spheroidal particle with the axis
of symmetry e�3 that coincides with the fixed axis of rotation.
Therefore the axis of rotation of the particle cannot change

its direction. The external electric field E� 0 is directed perpen-
dicular to the axis of symmetry of the particle. In this case
the principal axes of the ellipsoid e�1 ,e�2 can be chosen arbi-
trary in the plane perpendicular to the axis of symmetry, e�3,
and depolarization factors n1=n2.

The dipole moment of the particle P� can be written as

P� = P� �+ P� �. Here P� � is the dipole moment of the ideal dielec-

tric particle that coincides with P�  in Ref. �13�. In the prob-

lem considered in the present study P� �=�0�1��VE� �t�, where
�� is the geometric coefficient. In the case when the electric
field is directed perpendicular to the axis of symmetry of the
particle and the particle has the shape of a spheroid, ��

=�� / (1+���1−n� /2), ��=�2 /�1−1, n is the depolarization
factor along the axis of symmetry. In a case of a spherical
particle n=1/3, n=0 for a cylindrical particle, and n=1 for a

disc. Inspection of the formula for P� � shows that this com-
ponent of the total dipole moment does not contribute to the

torque acting on the particle M� = P� �E� . The retarded compo-

nent of the total dipole moment P� �= P� − P� � is determined by
macroscopic relaxation equation �see Refs. �11–13��, which
is written below without a subscript �.

�P�

�t
− 
� � P� +

P�

�m
=

�� − ��

�1 + f���1 + f��
P� s

�m
, �4�

where �m=�0�1+ f�� / �1+ f��, P� s=�0�1VE� �t�, f�=���1−n� /2,
f�=���1−n� /2, ��=�2 /�1−1, �0=�0�1 /�1, and 
 is the
particle rotation frequency.
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It must be emphasized that validity to neglect P� � hereafter

follows not only from a condition that P� � is directed along
the field and consequently does not contribute to the torque

M� , but also from the implied assumption that the rotation
axis is fixed and cannot change its position in space. In the
opposite case the sufficiently large electric field can destabi-
lize the orientation of the particle �11,13,14�. For dielectric
suspensions where the axes of particles rotation can change
their direction this effect is negligible only in the case of
slightly asymmetric nearly spherical particles.

Before solving the problem, i.e., determining stationary
regimes of particle rotation in a spinning electric field, let us
introduce dimensionless variables. The strength of the elec-

tric field E� is measured in units of Ē=�� /�mV. Consequently,

the dimensionless electric field X� =E� / Ē, and the dimension-

less dipole moment can be written as �� = P� / ĒV. The dimen-
sionless frequency of particle rotation �=
�m, and the di-
mensionless angular velocity of the external electric field can
be written as �=�	 /��, where �= t /�m and the angle 	 is
determined by Eq. �2�.

Expression �2� yields the following formula for the di-

mensionless electric field X� :

X� ��� =
X0���

2 �
�=±1

e−i�	���u��, �5�

where u��=e�1+ i�e�2, �= ±1.

Similarly, �� ��� can be written as follows:

�� ��� = �
�=±1

�����e−i�	���u��. �6�

Then the system of equations �3� and �4� can be rewritten as
follows:

K
d�

d�
+ � = − iX0��� �

�=±1
������, K =

I

��m
, �7�

� �

��
+ i��� − �� + 1��� = −

�X0���
2

, � =
�0�1��� − ���

�1 + f���1 + f��
.

�8�

The analysis performed in this study shows that the case
when parameter ��0 corresponds to a negative electrovis-
cosity �NEV particles� while the case when ��0 corre-
sponds to a positive electroviscosity �PEV particles�. Al-
though in this connection it seems logical to replace
parameter �→−�, formally it is more convenient to deter-
mine parameter � as in Eqs. �8�.

Consider a case when angular velocity and amplitude X0
of the external electric field are time independent. Then the
system of equations �7� and �8� admits a stationary solution,
��=��

0 , �=�0.

��
0 = −

1 − i���0 − ��
1 + ��0 − ��2

�X0

2
, �9�

�0 =
�X0

2��0 − ��
1 + ��0 − ��2 . �10�

Equations �6� and �9� determine a polarization vector for the
external field spinning with a constant angular velocity
�	���=���, and Eq. �10� determines the angular velocity of a
rotating particle. Prior to solving Eq. �10� let us investigate
this equation in the limiting cases, �0�� and �0��. As-
sume that �0��. Then Eq. �10� yields

�0 = −
�X0

2�

1 + �2 . �11�

Equation �11� shows that a condition that �0�� is valid for
any values of �, provided that �X0

2�1. Therefore the latter
condition is sufficient for the validity of Eq. �11� independent
on �. Note that a particle with ��0 rotates in the direction
opposite to the direction of spinning of the external field.

The frequency of particle rotation �0 can be larger than
the rotation frequency of the external electric field �, 	�0	
� 	�	, only when ��0. When ��0, Eq. �10� implies that
	�0	� 	�	. It is shown below that in the case ��0 the particle
can rotate either in the direction of the rotation of the exter-
nal electric field or in the opposite direction.

Now let us determine the solutions of Eq. �10� and inves-
tigate their stability. Denote �−=�0−� and rewrite Eq. �10�
with respect to �−,

�−
3 + ��−

2 + �1 − �X0
2��− + � = 0. �12�

Equation �12� implies that �−=0 only if �=0, i.e., regimes
with synchronous rotation of the particle and the vector of
the external field do not exist. Equation �12� implies also that
when �X0

2�0 and ��0 then �0�0, i.e., the particle sub-
jected to a rotating electric field cannot remain in rest as for
��0 as in the case when ��0.

III. ANALYSIS OF REGIMES OF PARTICLE ROTATION

In order to write the solutions of Eq. �12�, introduce the
following parameters:

a1 = 9
1 +
�X0

2

2
�, a2 = 3�1 − �X0

2� , �13�

d1 = ���2 + a1
2�, d2 = 	a2 − �2	 . �14�

Using parameters �13� and �14� allows us to identify three
domains. The first domain �2�a2 is realized under the con-
dition �X0

2�1 only. In the opposite case when �X0
2�1, a2

�0. In the first domain there exists only one real root �−=
−� /3+y1, where

y1 =
1

3 �
�=±1

���d1
2 + d2

3 − �d1�1/3. �15�

The second domain is determined by relations �2�a2 and
	d1	��d2

3. There is also only one root in this domain, �−
=−� /3+y2, where
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y2 = −
1

3
sgn�d1� �

�=±1
�	d1	 + ��d1

2 − d2
3�1/3. �16�

When �2=a2 then d2=0 and y1=y2. The third domain with
three real roots is determined by relations �2�a2 and 	d1	
��d2

3.
Denote real roots as ya�yb�yc, where

ya = − 2 cos��0�, yb = 2 cos
�0 +
�

3
� ,

yc = 2 cos
�0 −
�

3
� ,

�0 = cos−1
 d1

�d2
3� . �17�

The formula for the relative rotation frequency in this do-
main, �−, reads

�−
i = −

�

3
+

�d2

3
yi, �18�

where i=a ,b ,c.
Equation �12� implies that rotation frequency of the par-

ticle, �0=�−+�, is an odd function of the frequency of the
external electric field �, �0�−� ,�X0

2�=−�0�� ,�X0
2�.

The above analysis allows us to identify two domains of
the parameters of the problem. The first domain corresponds
to the regimes of particle rotation that are determined by Eqs.
�15� and �16�. In this domain for a given value of parameter
� �see Eq. �8�� there exists only one regime of particle rota-
tion. When the parameter ��0, then the particle rotates in
the direction of rotation of the external electric field. If �
�0 then the particle rotates against the direction of rotation
of the external electric field. As we noted in Sec. II, particles
with parameter ��0 can be classified as particles with posi-
tive electric viscosity �PEV particles� while particles with
��0 can be classified as particles with negative electric vis-
cosity �NEV particles�. The domain with a single rotation
regime �single electroviscosity range� for a given amplitude
of the external electric field X0 is separated from the domain
where the same particle can rotate in different directions
when the parameter ��0. In these bistable viscosity regions
the frequencies of particle rotations are determined by Eqs.
�17� and �18�. For a given amplitude of the external electric
field X0 we can introduce the critical frequency �c�X0� such
that for the frequencies of rotation of the external electric
field 	�	��c�X0�, the regime of particle rotation is deter-
mined by Eqs. �17� and �18� while for frequencies 	�	
��c�X0� the regime of particle rotation is determined by Eqs.
�15� and �16�. The above analysis implies that the depen-
dence �c�X0� is determined by the following conditions:
	d1	=�d2

3,�X0
2�1. These conditions yield the following rela-

tions:

�c
2 = s + �s2 + ��X0

2 − 1�3, s =
��X0

2�2 − 20�X0
2 − 8

8
.

�19�

For �X0
2→1, �c

2=4/27��X0
2−1�3. In Fig. 1 we showed the

dependence �c��X0
2�. Equation �19� allows us to determine

the critical magnitude of the amplitude of the external elec-
tric field Xc��� for a given frequency of rotation of the exter-
nal field by substituting �c→� and X0→Xc���. For small
amplitudes of the electric field �X0

2−1�1, the formula for
the critical amplitude reads

�Xc
2 = 1 +

3

41/3 	�	2/3. �20�

The bistable electroviscosity regime occurs only in the range
X0

2�Xc
2. It is convenient to consider separately the cases with

�X0
2�1 and �X0

2�1 for determining the dependence of the
particle rotation frequency on the parameters of the problem.

In Fig. 2 we showed the dependence �0�� ,�X0
2� as a func-

tion of the parameter � for various values of �X0
2�1. It was

noted above that the rotation frequency of the particle �0 is
an odd function of the parameter �. Inspection of the plots
presented in Fig. 2 shows that for �X0

2�1 Eq. �11� describes
fairly well the dependence of the particle rotation frequency
on the parameters of the problem.

FIG. 1. Curve �c��X0
2� separates between the domains with

single electroviscosity �SEV� and bistable electroviscosity �BEV�.

FIG. 2. Dependence of the rotation velocity of the particle �0 vs
rotation frequency of the external electric field � in the range of
amplitude �X0

2�1. 1: �X0
2=1, 2: �X0

2=0.49, 3: �X0
2=−0.53, 4:

�X0
2=−1.55, 5: �X0

2=−2.06.
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In Fig. 3 we showed the dependence �0�� ,�X0
2� as a func-

tion of the parameter �X0
2 in the range of the amplitude of the

external field �X0
2�1.

The dependence of the particle rotation frequency in the
range of the amplitude of the external field �X0

2�1 is shown
in Figs. 4 and 5.

In Fig. 4 we showed the dependence of the solutions �a
��b��c vs the rotation frequency of the external electric
field for different values of the amplitude of the field. Inspec-
tion of these plots demonstrates that �a�−��=−�c���. In the
bifurcation point �=−�c��X0

2� rotation regimes a and b
merge, while rotation regimes b and c merge at �=�c��X0

2�.
The solution b exists only in the domain 	�	��c and when
the amplitude of the external field �X0

2�1. The equilibrium
state of the particle under the action of the dc electric field
for �X0

2�1 is stable �see below and also Ref. �11��. This
state of rest corresponds to the solutions a and c that merge
for �X0

2=1 when rotation frequency �=0. For small frequen-
cies of the external electric field when 	�	� ��X0

2−1, the
frequencies of particle rotation �a and �c are determined by
formula �12�, �c=�0

+, �a=�0
−, and �0

+���=−�0
−�−��.

In Fig. 5 we showed the dependence of the angular ve-
locities of the particle �a��b��c vs the amplitude of the
external electric field with different frequencies of rotation.
Bifurcation amplitude Xc

2 is determined by Eq. �20� in the

range of small frequencies �� �1 and grows with the in-
crease of the rotation frequency of the field.

The main regime of particle rotation remains continuous
during transition through the bifurcation point Xc���. For �
�0 this regime corresponds to the solution a, and for ��0 it
corresponds to the solution c. In the main regime a particle
with ��0 rotates against the direction of rotation of the
external electric field �NEV particle� while in additional re-
gimes that appear in the bistable regime, a NEV particle
behaves as a PEV particle, i.e., NEV particles rotate in the
direction of rotation of the electric field.

IV. STABILITY OF PARTICLE ROTATION REGIMES

In the analysis of stability of the above determined re-
gimes of stationary rotation of the particle we use Eqs. �7�
and �8� and relations �9� and �10�. Equations �7� and �8� are
linearized in the vicinity of the stationary solutions that are
determined by formulas �9� and �10�. Consequently, we seek
for the solutions of Eqs. �7� and �8�, ��, in the form ��

=��
0 +e�t��

1 and �=�0+e�t�1. Substituting these solutions
to Eqs. �7� and �8� we obtain the system of linear homoge-
neous equations with respect to perturbations ��

1 and �1,

�K� + 1��1 = − iX0 �
�=±1

���
1 , �21�

�� + i��− + 1���
1 = − i��1��

0 . �22�

The condition for existence of the nontrivial solution to Eqs.
�21� and �22� yields a dispersion equation with respect to the
increment �,

�3 + a1�2 + a2� + a3 = 0, �23�

where a1=2+ p, a2=1+�−
2 +2p−�X0

2p / �1+�−
2�, a3= p+ p�−

2

− p�X0
2�1−�−

2� / �1+�−
2�, p=1/K=��m / I. The condition for

existence of the stationary stable rotation �=�0 is Re���
�0, and according to the Routh-Hurwitz �see, e.g., Ref.
�18�� condition it realizes if and only if

FIG. 3. Dependence of the particle rotation frequency �0 vs
amplitude of the external electric field in the range of amplitude
�X0

2�1. 1: �=−6; 2: �=−3; 3: �=3; 4: �=6.

FIG. 4. Dependence of the particle rotation frequency �0 vs
rotation frequency of the external electric field � in the range �X0

2

�1 for three rotation regimes, �0
a ,�0

b ,�0
c. 1a, 1b, 1c: �X0

2=5.8; 2a,
2b, 2c: �X0

2=3.8; 3a, 3b, 3c: �X0
2=1.8.

FIG. 5. Dependence of the particle rotation frequency �0 vs
amplitude of the external electric field in the range �X0

2�1 for three
rotation regimes, �0

a ,�0
b ,�0

c. 1a, 1b, 1c: �=−0.4; 2a, 2b, 2c: �=0;
3a, 3b, 3c: �=0.4.
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a1a2 � a3, a3 � 0. �24�

Using parameter z=1+�−
2 the first condition in inequalities

�24� can be rewritten as

�1�z� = z2 + p
2 + p −
�X0

2

2
�z −

p2�X0
2

2
� 0. �25�

The second condition in inequalities �24� can be written as

�2�z� = z2 + �X0
2z − 2�X0

2 � 0. �26�

The stability condition is controlled by the parameters
�−

2 ,�X0
2 , p. Since �−

c�−��=−�−
a��� �see Fig. 4� hereafter we

consider only the domain ��0. Since z�1 it can be easily
verified that when �X0

2�2 the condition �25� is satisfied in-
dependently of other parameters. The condition �26� is satis-
fied independently of other parameters when −2��X0

2�1.
Therefore, the stability of rotation of the PEV particle

���0� is determined by Eq. �26�, and does not depend upon
the inertia, i.e., on the parameter p. It can be shown that the
rotation of PEV particles is always stable.

It was noted above that for ��0 �NEV particle� there
exist the main solution and additional solutions. The main
solution is continuous during the transition through a bifur-
cation point, and describes particle rotation against the direc-
tion of rotation of the external electric field. The additional
solutions occur in the bistable region and describe particle
rotation in the direction of rotation of the external electric
field. It must be emphasized that all the conclusions concern-
ing the regimes a and c in the range ��0 are valid for the
regimes c and a, correspondingly, in the range ��0.

When ��0 the main regime is �0
a and the additional re-

gimes are �0
b and �0

c. The regime �0
b is unstable in the whole

range of parameters p ,� ,�X0
2�1. Configurations of the sta-

bility domains for regimes �0
a and �0

c in the space of param-
eters p ,� ,�X0

2 are different. We did not conduct the complete
investigation of this facet of the problem. At this stage the
performed numerical analysis of the stability of the main
regime �0

a for ��0 and the regime �0
c for ��0 did not

detect the domains of the instability. At the same time the
additional regimes �0

c for ��0 and �0
a for ��0 revealed

instability bands when parameter p was varied and param-
eters � ,�X0

2 were kept constant. Thus, e.g., there exist an
interval of the parameter p, p1� p� p2, where for given val-
ues of parameters ��0,�X0

2, solution �0
c is unstable. Simi-

larly, in the same interval of parameter p the regime a is
unstable for ��0.

In the conclusion of this section let us consider the case
�=0, which is useful for the analysis of a general case with
��0 and that can be investigated completely.

In this case when �X0
2�1, �−=�0=0, z=1, �1�z��0, and

�2�z��0. When �X0
2�1 there exist three solutions, namely,

�a=−��X0
2−1, �b=0, �c=��X0

2−1. Consequently, za=zc
=�X0

2, zb=1, �2
a=�2

c =2�X0
2��X0

2−1��0, �2
b=1−�X0

2�0.
Thus the solution �b is unstable for �=0. It was noted above
that this instability remains also for any ��0. For �=0 the
functions �1

a=�1
c =�1 and

�1 =
�X0

2

2
��X0

2�2 − p� + 4p + p2� . �27�

Taking into account that �X0
2�1, for p�2 Eq. �27� implies

that independent of the amplitude of the external field the
system is always stable. When p�2 the condition �1�0
yields

�X0
2 �

p�4 + p�
p − 2

. �28�

Expression �28� corresponds to the condition of instability
�X0

2� p�4+ p� / �p−2� that was derived in Ref. �12�. How-
ever, in study �12� it was not mentioned that for p�2 the
system is always stable and not vice versa as it would have
been implied by the condition of instability that was derived
in Ref. �12�.

The minimum value of the right-hand side of Eq. �28� is
attained for p*=2+�12. Therefore when 1��X0

2�2�12+8
then for �=0 the particle rotation is stable independent of
the magnitude of the parameter p. The maximum particle

rotation frequency in this case is �*=�2�12+7. When �X0
2

�2�12+8 there exists a range of parameter p1� p� p2,
where the rotation of the particle is unstable. The end points
of this interval are determined by the following formula:

p1,2 =
�X0

2 − 4

2
�

1

2
���X0

2 − 4�2 − 8�X0
2. �29�

For �X0
2→, p1→2, p2→.

V. CONCLUSIONS

We showed that under the action of the homogeneous
electric field rotating with a constant frequency � the particle
embedded in a host fluid with a finite electric conductivity
rotates around its axis of symmetry when the external field is
perpendicular to the axis. For a given amplitude of the exter-
nal electric field X0 and its frequency �, the frequency of
particle rotation �0 and the direction of rotation are deter-
mined by parameter � �see Eq. �8��. When ��0 the particle
rotates in the direction of rotation of the external field, and
the frequency of particle rotation 	�0	� 	�	. For small ampli-
tudes of the external field the dependence �0��� is deter-
mined by Eq. �11�. In a more general case the dependence of
particle rotation frequency on the frequency of rotation of the
external electric field is shown in Fig. 2 �curves 3, 4, 5�. The
dependence of particle rotation frequency on the amplitude
of the external electric field for small amplitudes is given by
Eq. �11� while the dependence for a more general case is
shown in Fig. 3.

For ��0 the situation is more involved. In this domain
for the given amplitude of the external field X0 there exists
the critical frequency �c�X0� such that for 	�	��c�X0� �see
Fig. 1� there are three different regimes of particle rotation,
�0

a��0
b��0

c �see Fig. 4 where �c=0.4,1 ,2�.
In the main regime of rotation, which is continuous in the

whole range of the parameters, and corresponds to the solu-
tion �0

a for ��0, the particle rotates against the direction of
rotation of the electric field. In the secondary regimes, �0

b
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and �0
c for ��0 or �0

a and �0
b for ��0, the particle rotates

in the direction of rotation of the external field, and the
solution �0

b is unstable in the whole range of the parameters.
The amplitude of the electric field that satisfies the condition
�X0

2=1 is a threshold. For the external electric field with
�X0

2�1 there exists only one regime of rotation of the par-
ticle independent of the rotation frequency of the external
field.

The performed analysis elucidates some aspects of
Quincke rotation �see, e.g., Ref. �2��. Since the dc electric
field can be viewed as a particular case with �=0, the ob-
tained results show that the rest state of the particle, which
can be realized for arbitrary amplitude of the field for ��0,
is not the stable state separated by the gap from the state of
rotation, but it is rather the consequence of the fact that for
��0, 	�0	� 	�	, and �0→0 when �→0.

Although the main goal of this study is investigating the
case of the rotating electric field it must be noted that in the
case of a spherical particle this problem is formally equiva-
lent to the case of rotation of the suspension particles in the
shear flow in the presence of dc electric field �15–17�. Con-
sidering the latter case corresponds to the transformation to
the reference frame that rotates with the external electric
field. In this frame of reference the external electric field
does not change its direction, the fluid rotates with the fre-
quency −� and the particle rotation frequency ��=�−�
=�−. Indeed, neglecting the moment of inertia in Eqs �7� and
�8� �set K=0� and performing the above substitution demon-
strates the equivalence of the system of Eqs. �7� and �8� to
the system of equations that was considered in Ref. �17� �see
Eqs. �1� and �2� in Ref. �17��.

The results obtained in this study complement the results
of previous investigations �13–17�, which considered the
renormalization of the viscosity of particle suspension in the
presence of the dc electric field. The obtained results allow
us to determine in the explicit form the critical shear 
c�X0�
that separates the domain of bistability from the domain
where occurs only the main regime. The obtained results also
allow us to determine the critical amplitude of the external
electric field Xc�
� as a function of vorticity of the shear

flow 
� =1/2�� �V� and the explicit dependence of the effec-
tive viscosity upon the amplitude of the electric field for
various magnitudes of shear provided that the formula for the
renormalization of the viscosity is known. Since the main
interest in the latter problem is to compare the obtained re-
sults with the experimental data on the viscosity of suspen-
sions subjected to the dc electric field, it will be considered
in a separate study.

On the other hand, investigation of the viscosity of sus-
pensions requires also solving the hydrodynamic part of the
problem together with the analysis of the individual particle
behavior. This problem does not have a universal solution,
and the analysis of the adequacy of the available approaches
in the literature requires their comparison with the experi-
mental data. Therefore from the theoretical point of view it is
preferable to investigate an individual rotator embedded in a
host fluid under the action of the rotating electric field. In the
case of the dc electric field this problem was considered in
Ref. �12�. The obtained theoretical results allow us to per-
form a comparison between the experimental and theoretical
results in two domains, ��0 and ��0.
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